行业新闻

变频器相关问答题

变频器相关问答题
变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 
1. 电机的旋转速度为什么能够自由地改变? 
  *1: r/min 
  电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 
  例如:2极电机 50Hz 3000 [r/min] 
  4极电机 50Hz 1500 [r/min] 
  结论:电机的旋转速度同频率成比例 
 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 
   另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 
   因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 
   n = 60f/p 
   n: 同步速度 
   f: 电源频率 
   p: 电机极对数 
   结论:改变频率和电压是最优的电机控制方法 
  如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 

  例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 
2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? 
    *1: 工频电源 
    由电网提供的动力电源(商用电源) 
    *2: 起动电流 
    当电机开始运转时,变频器的输出电流 
    变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 
    电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 
    通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。 
    通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。 
3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低 
    通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te P=Pe)
    变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。 
    当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。 
    举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。 
    因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie
4. 变频器50Hz以上的应用情况 
  大家知道 对一个特定的电机来说 其额定电压和额定电流是不变的。 
  如变频器和电机额定值都是: 15kW/380V/30A 电机可以工作在50Hz以上。 
  当转速为50Hz时 变频器的输出电压为380V 电流为30A. 这时如果增大输出频率到60Hz 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速. 
        这时的转矩情况怎样呢? 
    因为P=wT (w:角速度 T:转矩). 因为P不变 w增加了 所以转矩会相应减小。   
    我们还可以再换一个角度来看: 
    电机的定子电压 U = E + I*R (I为电流 R为电子电阻 E为感应电势) 
    可以看出 UI不变时 E也不变. 
    而E = k*f*X (k:常数 f: 频率 X:磁通) 所以当f由50--60Hz时 X会相应减小 
    对于电机来说 T=K*I*X (K:常数 I:电流 X:磁通) 因此转矩T会跟着磁通X减小而减小. 
    同时 小于50Hz时 由于I*R很小 所以U/f=E/f不变时 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变--最大转矩不变) 
    结论: 当变频器输出频率从50Hz以上增加时 电机的输出转矩会减小. 
5. 其他和输出转矩有关的因素 
  发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。 
  载波频率: 一般变频器所标的额定电流都是以最高载波频率 最高环境温度下能保证持续输出的数值. 降低载波频率 电机的电流不会受到影响。但元器件的发热会减小。 
  环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值. 
  海拔高度: 海拔高度增加 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了. 
   6. 矢量控制是怎样改善电机的输出转矩能力的? 
*1: 转矩提升 
    此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。   
    $ 改善电机低速输出转矩不足的技术 
    使用"矢量控制",可以使电机在低速如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。 
    对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。 
    转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。 
    "矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。 
    "矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。 
1、什么是变频器? 
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 
2、PWM和PAM的不同点是什么? 
PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 
  PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 
3、电压型与电流型有什么不同? 
变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 
4、为什么变频器的电压与电流成比例的改变? 
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 
5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加? 
频率下降(低速)时如果输出相同的功率则电流增加但在转矩一定的条件下电流几乎不变。 
6、采用变频器运转时,电机的起动电流、起动转矩怎样? 
采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。 
7、V/f模式是什么意思? 
频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择 
8、按比例地改V和f时,电机的转矩如何变化? 
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f要使输出电压提高一些以便获得一定地起动转矩这种补偿称增强起动。可以采用各种方法实现有自动进行的方法、选择V/f模式或调整电位器等方法 
9、在说明书上写着变频范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗? 
在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz. 
10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以? 
通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在 高速下要求相同转矩时,必须注意电机与变频器容量的选择。 
11、所谓开环是什么意思? 
给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环 ”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈. 
12、实际转速对于给定速度有偏差时如何办? 
开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。 
13、如果用带有PG的电机,进行反馈后速度精度能提高吗? 
具有PG反馈功能的变频器,精度有提高。但速度精度的植取决于PG本身的精度和变频器输出频率的分辨率。 
14、失速防止功能是什么意思? 
如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。 
15、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义? 
加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。 
16、什么是再生制动? 
电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。 
17、是否能得到更大的制动力? 
从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件制动单元,可以达到50%~100%。 
18、请说明变频器的保护功能? 
保护功能可分为以下两类: 
 (1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。 
 (2) 检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。 
19、为什么用离合器连续负载时,变频器的保护功能就动作? 
用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。 
20、在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么? 
电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。 
21、什么是变频分辨率?有什么意义? 
对于数字控制的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。 
变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min 以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。 
22、装设变频器时安装方向是否有限制。 
变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。 
23、不采用软起动,将电机直接投入到某固定频率的变频器时是否可以? 
在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动。 
24、电机超过60Hz运转时应注意什么问题? 
超过60Hz运转时应注意以下事项 
(1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。 
(2) 电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。 
 (3) 产生轴承的寿命问题,要充分加以考虑。 
(4) 对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与厂家仔细商讨。 
25、变频器可以传动齿轮电机吗? 
根据减速机的结构和润滑方式不同,需要注意若干问题。在齿轮的结构上通常可考虑70~80Hz为最大极限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等。 
26、变频器能用来驱动单相电机吗?可以使用单相电源吗? 
机基本上不能用。对于调速器开关起动式的单相电机,在工作点以下的调速范围时将烧毁 辅助绕组;对于电容起动或电容运转方式的,将诱发电容器爆炸。变频器的电源通常为3相,但对于小容量的,也有用单相电源运转的机种。 
27、变频器本身消耗的功率有多少? 
它与变频器的机种、运行状态、使用频率等有关,但要回答很困难。不过在60Hz以下的变频器效率大约为94%~96%,据此可推算损耗,但内藏再生制动式(FR-K)变频器,如果把制动时的损耗也考虑进去,功率消耗将变大,对于操作盘设计等必须注意。 
28、为什么不能在6~60Hz全区域连续运转使用? 
一般电机利用装在轴上的外扇或转子端环上的叶片进行冷却,若速度降低则冷却效果下降,因而不能承受与高速运转相同的发热,必须降低在低速下的负载转矩,或采用容量大的变频器与电机组合,或采用专用电机。 
29、使用带制动器的电机时应注意什么? 
制动器励磁回路电源应取自变频器的输入侧。如果变频器正在输出功率时制动器动作,将造成过电流切断。所以要在变频器停止输出后再使制动器动作。 
30、想用变频器传动带有改善功率因数用电容器的电机,电机却不动,清说明原因 
变频器的电流流入改善功率因数用的电容器,由于其充电电流造成变频器过电流(OCT)所以不能起动,作为对策,请将电容器拆除后运转,甚至改善功率因数,在变频器的输入侧接入AC电抗器是有效的。
 31、变频器的寿命有多久? 
变频器虽为静止装置,但也有像滤波电容器、冷却风扇那样的消耗器件,如果对它们进行定期的维护,可望有10年以上的寿命。 
32、变频器内藏有冷却风扇,风的方向如何?风扇若是坏了会怎样? 
对于小容量也有无冷却风扇的机种。有风扇的机种,风的方向是从下向上,所以装设变频器的地方,上、下部不要放置妨碍吸、排气的机械器材。还有,变频器上方不要放置怕热的零件等。风扇发生故障时,由电扇停止检测或冷却风扇上的过热检测进行保护 
33、滤波电容器为消耗品,那么怎样判断它的寿命? 
作为滤波电容器使用的电容器,其静电容量随着时间的推移而缓缓减少,定期地测量静电容量,以达到产品额定容量的85%时为基准来判断寿命。 
34、装设变频器时安装方向是否有限制。 
应基本收藏在盘内,问题是采用全封闭结构的盘外形尺寸大,占用空间大,成本比较高。其措施有: 
      (1)盘的设计要针对实际装置所需要的散热; 
      (2)利用铝散热片、翼片冷却剂等增加冷却面积; 
      (3) 采用热导管。 
 此外,已开发出变频器背面可以外露的型式。 
35、想提高原有输送带的速度,以80Hz运转,变频器的容量该怎样选择? 
设基准速度为50Hz50Hz以上为恒功率输出特性。像输送带这样的恒转矩特性负载增速时,容量 需要增大为80/50≈1.6倍。电机容量也像变频器一样增大
变频器:inverter(日本),AC Driver(欧美),Frequency Converter(欧洲)
变流器:converter
整流:rectifying-rectification
整流器:rectifier
逆变:inverting-inversion
逆变器:inverter
转矩脉动:torque pulsation
脉宽调制:PWM(pulse width modulation)
正弦波脉宽调制:SPWM(sine pulse width modulation)
谐波:harmonic
矢量控制:VC(vector control)
直接转矩控制:DTC(direct torque control)
四象限运行:Four quadrant operation
再生(制动):Regeneration (braking)
直流制动:DC braking
漏电流:leak current
滤波器:filter
电抗器:reactor
电位器:potentiometer
编码器:encoder,PLG(pulse generator)
定子:stator
对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器——整流子。 
    20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 
1. 交流变频调速的优异特性 
    (1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。 
    (2) 调速范围较大,精度高。 
    (3) 起动电流低,对系统及电网无冲击,节电效果明显。 
    (4) 变频器体积小,便于安装、调试、维修简便。 
    (5) 易于实现过程自动化。 
    (6) 必须有专用的变频电源,目前造价较高。 
    (7) 在恒转矩调速时,低速段电动机的过载能力大为降低。 
2. 与其它调速方法的比较 
    交流电动机的调速方法有三种:变极调速、改变转差率调速和变频调速。其中,变频调速最具优势。这里仅就交流变频调速系统与直流调速系统做一比较。 
    在直流调速系统中,由于直流电动机具有电刷和整流子,因而必须对其进行检查,电机安装环境受到限制。例如:不能在有易爆气体及尘埃多的场合使用。此外,也限制了电机向高转速、大容量发展。而交流电机就不存在这些问题,主要表现为以下几点: 
    第一,直流电机的单机容量一般为12 - 14MW,还常制成双电枢形式,而交流电机单机容量却可以数倍于它。第二,直流电机由于受换向限制,其电枢电压最高只能做到一千多伏,而交流电机可做到6 - 10kV。第三,直流电机受换向器部分机械强度的约束,其额定转速随电机额定功率而减小,一般仅为每分钟数百转到一千多转,而交流电机的达到每分钟数千转。第四,直流电机的体积、重量、价格要比同等容量的交流电机大。最后,特别要指出的是交流调速系统在节约能源方面有着很大的优势。一方面,交流拖动的负荷在总用电量中占一半或一半以上的比重,这类负荷实现节能,可以获得十分可观的节电效益。另一方面,交流拖动本身存在可以挖掘的节电潜力。在交流调速系统中,选用电机时往往留有一定余量,电机又不总是在最大负荷情况下运行;如果利用变频调速技术,轻载时,通过对电机转速进行控制,就能达到节电的目的。工业上大量使用风机、水泵、压缩机等,其用电量约占工业用电量的50%;如果采用变频调速技术,既可大大提高其效率,又可减少10%的电能消耗。 
3. 合理应用 
    交流变频调速技术在工业发达国已得到广泛应用。美国有60% - 65%的发电量用于电机驱动,由于有效地利用了变频调速技术,仅工业传动用电就节约了15% - 20%的电量。 
    采用变频调速,一是根据要求调速用,二是节能。它主要基于下面几个因素: 
(1) 变频调速系统自身损耗小,工作效率高。 
(2) 电机总是保持在低转差率运行状态,减小转子损耗。 
(3) 可实现软启、制动功能,减小启动电流冲击。 
    在采用变频调速时,需从工艺要求、节约效益、投资回收期等各方面考虑。如果仅从工艺要求、节约效益考虑,下面几种情况选用变频调速较有利: 
    F根据工艺要求,生产线或单台设备需要按程序或按要求调整电机速度的。如:包装机传送系统,根据不同品种的产品,需要改变系统传送速度,使用变频调速可使调速控制系统结构简单,控制准确,并易于实现程序控制。 
    F用变频调速代替机械变速。如:机床,不仅可以省去复杂的齿轮变速箱,还能提高精度、满足程序控制要求。 
    F用变频调速代替用闸门或挡板调整流量适于风机、水泵、压缩机等。例如:锅炉上水泵、鼓风机、引风机实行了变频调速控制,不仅省去了伺服放大器、电动操作器、电动执行器和给水阀门(或挡风板),而且使得整个锅炉锅炉控制系统得到了快速的动态响应、高的控制精度和稳定性。 
4. 变频器容量的确定 
    变频调速是通过变频器来实现的,对于变频器的容量确定至关重要。合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三种: 
    (1) 电机实际功率确定发  首先测定电机的实际功率,以此来选用变频器的容量。 
    (2) 公式法  设安全系数取1.05,则变频器的容量Pb为 
    Pb = 1.05Pm/hm×cosy (kW)
    式中,Pm为电机负载;hm为电机功率。 
    计算出Pb后,按变频器产品目录可选出具体规格。 
    In为第n台电动机的额定电流,n为电机的台数。在任何情况下,都不能在连续使用时超过额定电流I,当一台变频器用于多台电机时,应满足 
    (3) 电机额定电流法变频器  变频器容量选定过程,实际上是一个变频器与电机的最佳匹配过程,最常见、也较安全的是使变频器的容量大于或等于电机的额定功率,但实际匹配中要考虑电机的实际功率与额定功率相差多少,通常都是设备所选能力偏大,而实际需要的能力小,因此按电机的实际功率选择变频器是合理的,避免选用的变频器过大,使投资增大。 
    虽然变频调速有诸多优点,但也有其不利因素,主要问题是电流中含高次谐波较多,除对电网有污染外,也使电机自身增加损耗,引起电机发热。再有,变频器价格贵、投资回收器长、技术复杂、尤其在实现闭环自动控制时,还需进行技术处理。 
    此外,不是任何情况下变频器都节电,如果电机负载变化不大,或深井泵配有水塔,节电、节水效果都不大,就不宜使用变频调速。 
5. 评价 
    交流变频调速的方法是异步电机最有发展前途的调速方法。随着电力电子技术的不断发展,性能可靠、匹配完善、价格便宜的变频器会不断出现,这一技术会得到更为广泛、普遍的应用。目前,国外先进国家的变频技术正向小型化、高可靠性、抗公害、多功能、高性能等方向发展,我国也在加快发展步伐。